C/N ratio drives soil actinobacterial cellobiohydrolase gene diversity.

نویسندگان

  • Alexandre B de Menezes
  • Miranda T Prendergast-Miller
  • Pabhon Poonpatana
  • Mark Farrell
  • Andrew Bissett
  • Lynne M Macdonald
  • Peter Toscas
  • Alan E Richardson
  • Peter H Thrall
چکیده

Cellulose accounts for approximately half of photosynthesis-fixed carbon; however, the ecology of its degradation in soil is still relatively poorly understood. The role of actinobacteria in cellulose degradation has not been extensively investigated despite their abundance in soil and known cellulose degradation capability. Here, the diversity and abundance of the actinobacterial glycoside hydrolase family 48 (cellobiohydrolase) gene in soils from three paired pasture-woodland sites were determined by using terminal restriction fragment length polymorphism (T-RFLP) analysis and clone libraries with gene-specific primers. For comparison, the diversity and abundance of general bacteria and fungi were also assessed. Phylogenetic analysis of the nucleotide sequences of 80 clones revealed significant new diversity of actinobacterial GH48 genes, and analysis of translated protein sequences showed that these enzymes are likely to represent functional cellobiohydrolases. The soil C/N ratio was the primary environmental driver of GH48 community compositions across sites and land uses, demonstrating the importance of substrate quality in their ecology. Furthermore, mid-infrared (MIR) spectrometry-predicted humic organic carbon was distinctly more important to GH48 diversity than to total bacterial and fungal diversity. This suggests a link between the actinobacterial GH48 community and soil organic carbon dynamics and highlights the potential importance of actinobacteria in the terrestrial carbon cycle.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbial mechanisms mediating increased soil C storage under elevated atmospheric N deposition.

Future rates of anthropogenic N deposition can slow the cycling and enhance the storage of C in forest ecosystems. In a northern hardwood forest ecosystem, experimental N deposition has decreased the extent of forest floor decay, leading to increased soil C storage. To better understand the microbial mechanisms mediating this response, we examined the functional genes derived from communities o...

متن کامل

Environmental Controls Over Actinobacteria Communities in Ecological Sensitive Yanshan Mountains Zone

The Yanshan Mountains are one of the oldest mountain ranges in the world. They are located in an ecologically sensitive zone in northern China near the Hu Huanyong Line. In this metagenomic study, we investigated the diversity of Actinobacteria in soils at 10 sites (YS1-YS10) on the Yanshan Mountains. First, we assessed the effect of different soil prtreatment on Actinobacteria recovery. With t...

متن کامل

Molecular Interactions of Endophytic Actinobacteria in Wheat and Arabidopsis

The endophytic actinobacterial population in the roots of wheat grown in three different soils obtained from the southeast part of South Australia was investigated by terminal restriction fragment length polymorphism (T-RFLP) analysis of the amplified 16S rRNA genes. A new, validated approach was applied to the TRFLP analysis in order to estimate, to the genus level, the actinobacterial populat...

متن کامل

Ubiquity, diversity and physiological characteristics of Geodermatophilaceae in Shapotou National Desert Ecological Reserve

The goal of this study was to gain insight into the diversity of culturable actinobacteria in desert soil crusts and to determine the physiological characteristics of the predominant actinobacterial group in these crusts. Culture-dependent method was employed to obtain actinobacterial strains from desert soil samples collected from Shapotou National Desert Ecological Reserve (NDER) located in T...

متن کامل

Microbial communities show parallels at sites with distinct litter and soil characteristics.

Plant and microbial community composition in connection with soil chemistry determines soil nutrient cycling. The study aimed at demonstrating links between plant and microbial communities and soil chemistry occurring among and within four sites: two pine forests with contrasting soil pH and two grasslands of dissimilar soil chemistry and vegetation. Soil was characterized by C and N content, p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 81 9  شماره 

صفحات  -

تاریخ انتشار 2015